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Over the past couple of years, there has been some discussion of the best
equations to use in makepod for computing the angle of attack α, angle of
sideslip β, and the dynamic pressure q. Most of the discussion has centered on
the three methods described in Leise and Masters (1991), which they call the
low-resolution, high-resolution, and NCAR methods. All three methods start
from the same basic equations for the pressure distribution over a sphere,
and mainly differ in what pressures are assumed to be the independent (i.e.,
measured) variables.

Early versions of makepod used the low-resolution method, which assumes
that the measured variables are δpy, δpz, and q, in which δpy is the pres-
sure difference between the right and left ports on the probe and δpz is
the pressure difference between the bottom and top ports. The problem
with this approach is that the BAT system actually measures the difference
δpx = p0 −pr between the pressure p0 at the central port and the pressure pr

obtained by averaging the pressure from the four “static” ports. Generally,
δpx will only equal q if α and β are zero, and pr equals the static pressure
ps. To get around this problem, an iterative approach was used in which δpx

was assumed to be a first guess of q.

In the newer version of makepod (Eckman et al. 1999), the low-resolution
method was replaced by the NCAR method. This method assumes the mea-
sured variables are δpy, δpz, and p0−ps. The main assumption required in us-
ing this method is that the average pressure pr from the “static” ports is equal
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to ps. In the most recent versions of makepod, other contributors have made
further changes in which α and β are computed using the NCAR method,
but q is computed using an equation from the high-resolution method. This
appears to be an attempt to get around the problem that pr may not equal
ps.

The primary reason there has been some debate on the best equations to
use in makepod is that none of the three methods described in Leise and
Masters (1991) really matches the configuration of the BAT probe, in which
the measured pressures are δpx, δpy, and δpz. The aim of this note is to
derive a set of equations for α, β, and q that more closely match the BAT
configuration.

The starting point of the derivation is the potential-flow equation (Brown
et al. 1983; Leise and Masters 1991)

p(n) = ps +
q

4

[
9(N · n)2 − 5

]
(1)

for the pressure distribution over a sphere. Here, N is a unit direction vector
that is normal to the sphere’s surface at the stagnation point, n is the normal
direction vector at some chosen point on the sphere, and p(n) is the pressure
at the chosen point. The unit vector N is equal to (Leise and Masters 1991)

N =
1

D
i − tan β

D
j − tan α

D
k , (2)

where D =
√

1 + tan2 α + tan2 β and (i, j,k) are the unit vectors for the
probe coordinate system. The sign conventions in Eq. (2) have been altered
from Leise and Masters (1991) to match the coordinate system used with the
BAT system.

Equations for δpx, δpy, and δpz can be derived from Eq. (1) by determining
the values of n that correspond to the positions of the various ports on the
probe. For δpy, and δpz, it is assumed that the right-left and top-bottom
ports are at an angle φ away from the center port. Equation (1) then gives

δpy = 9q
sinφ cos φ

D2
tan β ; (3)

δpz = 9q
sinφ cos φ

D2
tan α . (4)
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To compute δpx, an equation must first be derived for the reference pressure
pr. It is assumed that pr represents the average pressure of the four “static”
pressure ports. (Some calculations performed using pipe-flow theory suggest
that this is a good assumption as long as the tubes connecting the four ports
are of the same length.) If the “static” ports are at an angle φr from the
center port, then pr is found to be

pr = ps +
q

4

[
9
cos2 φr + 0.5 (tan2 α + tan2 β) sin2 φr

D2
− 5

]
. (5)

The appropriate equation for δpx = p0 − pr is then

δpx =
9q

8D2
sin2 φr

[
3 −D2

]
. (6)

Equations (3), (4), and (6) form a closed system of equations that can be
solved for the unknowns α, β, and q. To solve this system, it is is useful to
define the ratios

Hy =
sin2 φr

8 sin φ cos φ

δpy

δpx
; (7)

Hz =
sin2 φr

8 sin φ cos φ

δpz

δpx
. (8)

The flow angles can then be obtained as

tan α =
4Hy

1 +
√

1 + 8
(
H2

y + H2
z

) ; (9)

tan β =
4Hz

1 +
√

1 + 8
(
H2

y + H2
z

) , (10)

and q as

q =
8

9

δpx

sin2 φr

1 + tan2 α + tan2 β

2 − tan2 α − tan2 β
. (11)

Equations (9)–(11) are different from any of the three methods described by
Leise and Masters (1991). However, they more closely match the pressure
variables that are available from the BAT system. Note also that the BAT
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system has a separate channel for the reference pressure pr. This means that
the static pressure ps can be estimated from Eq. (5) once α, β, and q are
computed.

In the equations derived above, the positions φ and φr of the pressure ports
have been retained as known constants. Theoretically, an angle of 41.81◦

is useful for φr, because pr will then equal ps when α = β = 0. (But not
for other flow angles.) For φ, an angle of 45◦ has often been used. One of
the early pressure spheres used on the Long-EZ aircraft apparently did use
φr = 41.81◦ and φ = 45◦. However, wind-tunnel tests of this sphere indicated
that pr 6= ps even when the stagnation point was at the center port. This
was interpreted as resulting from deviations of the real-world flow from the
potential-flow theory given in Eq. (1). As a result, the “static” ports were
moved back to 45◦, which is why the current BAT system uses φ = φr = 45◦.

The movement of the “static” ports to 45◦ brought pr closer to ps, but this
leads to some confusion regarding the application of Eqs. (7)–(11). Should
these be applied using the original angles of φr = 41.81◦ and φ = 45◦, or
using the corrected angles φ = φr = 45◦? In the past, the original angles
have usually been used, but it is not clear that this is the best approach.
The issue is difficult to resolve, because the movement of φr from 41.81◦ to
45◦ was done to counter viscosity effects which are totally ignored in the
derivations of Eqs. (7)–(11).
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